The value of

Question:

The value of $\frac{\tan ^{2} \theta-\sec ^{2} \theta}{\cot ^{2} \theta-\operatorname{cosec}^{2} \theta}$ is

(a) –1

(b) $\frac{1}{2}$

(c) $\frac{-1}{2}$

(d) 1

 

Solution:

$\frac{\tan ^{2} \theta-\sec ^{2} \theta}{\cot ^{2} \theta-\operatorname{cosec}^{2} \theta}$

$=\frac{-1}{-1} \quad\left(1+\tan ^{2} \theta=\sec ^{2} \theta\right.$ and $\left.1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\right)$

$=1$

Hence, the correct answer is option (d).

 

Leave a comment