The value of

Question:

The value of $\int_{0}^{\pi}|\cos x|^{3} \mathrm{~d} x$ is:

  1. (1) 0

  2. (2) $\frac{4}{3}$

  3. (3) $\frac{2}{3}$

  4. (4) $\frac{-4}{3}$


Correct Option: , 2

Solution:

$I=\int_{0}^{\pi}|\cos x|^{3} d x$

$=2 \int_{0}^{\pi / 2} \cos ^{3} x d x$

$=\frac{2}{4} \int_{0}^{\pi / 2}(3 \cos x+\cos 3 x) d x$

$\left[\because \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\right]$

$=\frac{1}{2}\left[3 \sin x+\frac{\sin 3 x}{3}\right]_{0}^{\pi / 2}$

$=\frac{1}{2}\left(3-\frac{1}{3}\right)=\frac{4}{3}$

Leave a comment