Question:
The value of $\sin ^{-1}\left(\frac{12}{13}\right)-\sin ^{-1}\left(\frac{3}{5}\right)$ is equal to :
Correct Option: , 2
Solution:
$-\sin ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)=-\sin ^{-1}\left(\frac{3}{5} \times \frac{5}{13}-\frac{12}{13} \times \frac{4}{5}\right)$
$\left(\because x y \geq 0\right.$ and $\left.x^{2}+y^{2} \leq 1\right)$
$\left[\because \sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right\}\right]$
$=\sin ^{-1}\left(\frac{-33}{65}\right)=\sin ^{-1}\left(\frac{33}{65}\right)$
$=\cos ^{-1}\left(\frac{56}{65}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{56}{65}\right)$