Question:
Let $A=\{x \varepsilon R: x$ is not a positive integer $\}$
Define a function $f: \mathrm{A} \rightarrow \mathrm{R}$ as $f(\mathrm{x})=\frac{2 \mathrm{x}}{\mathrm{x}-1}$ then $f$ is
Correct Option: 1
Solution:
$f(\mathrm{x})=2\left(1+\frac{1}{\mathrm{x}-1}\right)$
$f^{\prime}(\mathrm{x})=-\frac{2}{(\mathrm{x}-1)^{2}}$
$\Rightarrow f$ is one-one but not onto