Question:
The value of $\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}$ is :
Correct Option: , 3
Solution:
$\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}=\left(\frac{2 \omega}{1-i}\right)^{30}$
$=\frac{2^{30} \cdot \omega^{30}}{\left((1-i)^{2}\right)^{30}}$
$=\frac{2^{30} \cdot 1}{\left(1+i^{2}-2 i\right)^{15}}$
$=\frac{2^{30}}{-2^{15} \cdot \mathrm{i}^{15}}$
$=-2^{15} \mathrm{i}$