Question:
The value of $2 \sin ^{2} B+4 \cos (A+B) \sin A \sin B+\cos 2(A+B)$ is
(a) 0
(b) cos 3A
(c) cos 2A
(d) none of these
Solution:
(c) cos 2A
We have,
$2 \sin ^{2} B+4 \cos (A+B) \sin A \sin B+\cos 2(A+B)$
$=1-\cos 2 B+\cos 2(A+B)+4 \cos (A+B) \sin A \sin B$
$=1+(\cos 2(A+B)-\cos 2 B)+4 \cos (A+B) \sin A \sin B$
$=1-2 \sin A \sin (A+2 B)+4 \cos (A+B) \sin A \sin B$
$\left[\because \cos C-\cos D=-2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}\right]$
$=1-2 \sin A[\sin (A+2 B)-2 \sin B \cos (A+B)]$
$=1-2 \sin A[\sin (A+2 B)-\{\sin (B+A+B)+\sin (B-(A+B))\}]$
$[\because 2 \sin C \cos D=\sin (C+D)+\sin (C-D)]$
$=1-2 \sin A[\sin (A+2 B)-\{\sin (A+2 B)+\sin (-A)\}]$
$=1-2 \sin A[\sin A]$
$=1-2 \sin ^{2} A$
$=\cos 2 A$