The value of

Question:

The value of

$\lim _{h \rightarrow 0} 2\left\{\frac{\sqrt{3} \sin \left(\frac{\pi}{6}+h\right)-\cos \left(\frac{\pi}{6}+h\right)}{\sqrt{3} h(\sqrt{3} \cosh -\sinh )}\right\}$ is

  1. $\frac{4}{3}$

  2. $\frac{2}{\sqrt{3}}$

  3. $\frac{3}{4}$

  4. $\frac{2}{3}$


Correct Option: 1

Solution:

$L=\lim _{h \rightarrow 0} 2\left(\frac{\sqrt{3}\left(\frac{1}{2} \cosh +\frac{\sqrt{3}}{2} \sinh \right)-\left(\frac{\sqrt{3}}{2} \cosh -\frac{\sinh }{2}\right)}{(\sqrt{3} h)(\sqrt{3})}\right)$

$\mathrm{L}=\lim _{\mathrm{h} \rightarrow 0} \frac{4 \sinh }{3 \mathrm{~h}}$

$\Rightarrow \mathrm{L}=\frac{4}{3}$

Leave a comment