Question:
The triangle of maximum area that can be inscribed in a given circle of radius ' $r$ ' is:
Correct Option: 4,
Solution:
Triangle of maximum area that can be inscribed in a circle is an equilateral triangle. Let $\triangle \mathrm{ABC}$ be inscribed in circle,
Now, in $\triangle O B D O D=r \cos 60^{\circ}=\frac{r}{2}$
Height $=A D=\frac{3 r}{2}$
Again in $\triangle \mathrm{ABD}$ Now $\sin 60^{\circ}=\frac{3 \frac{r}{2}}{A B}$
$\Rightarrow A B=\sqrt{3} r$