The triangle of maximum area that can be inscribed in a given circle of radius ' $r$ ' is :
Correct Option: , 3
$h=r \sin \theta+r$
base $=\mathrm{BC}=2 \mathrm{r} \cos \theta$
$\theta \in\left[0, \frac{\pi}{2}\right)$
Area of $\triangle \mathrm{ABC}=\frac{1}{2}(\mathrm{BC}) \cdot \mathrm{h}$
$\Delta=\frac{1}{2}(2 r \cos \theta) \cdot(r \sin \theta+r)$
$=r^{2}(\cos \theta) \cdot(1+\sin \theta)$
$\frac{\mathrm{d} \Delta}{\mathrm{d} \theta}=\mathrm{r}^{2}\left[\cos ^{2} \theta-\sin \theta-\sin ^{2} \theta\right]$
$=r^{2}\left[1-\sin \theta-2 \sin ^{2} \theta\right]$
$=\underbrace{\mathrm{r}^{2}[1+\sin \theta]}_{\text {positive }}[1-2 \sin \theta]=0$
$\Rightarrow \theta=\frac{\pi}{6}$
$\Rightarrow \Delta$ is maximum where $\theta=\frac{\pi}{6}$
$\Delta_{\max .}=\frac{3 \sqrt{3}}{4} \mathrm{r}^{2}=$ area of equilateral $\Delta$ with
$\mathrm{BC}=\sqrt{3} \mathrm{r}$