Question:
The total number of 3 -digit numbers, whose sum of digits is 10 , is________.
Solution:
Let $x y z$ be the three digit number
$x+y+z=10, x \leq 1, y \geq 0, z \geq 0$
$x-1=t \Rightarrow x=1+t$ $x-1 \geq 0, t \geq 0$
$t+y+z=10-1=9$ $0 \leq t, z, z \leq 9$
$\therefore$ Total number of non-negative integral solution
$={ }^{9+3-1} C_{3-1}={ }^{11} C_{2}=\frac{11 \cdot 10}{2}=55$
But for $t=9, x=10$, so required number of integers
$=55-1=54$