Question:
The time period of a satellite in a circular orbit of radius $R$ is $T$. The period of another satellite in a circular orbit of radius $9 \mathrm{R}$ is :
Correct Option: , 2
Solution:
$\mathrm{T}^{2} \propto \mathrm{R}^{3}$
$\left(\frac{T^{\prime}}{T}\right)^{2}=\left(\frac{9 R}{R}\right)^{3}$
$T^{\prime 2}=T^{2} \times 9^{3}$
$T^{\prime}=T \times 3^{3}$
$T^{\prime}=27 T$