Question:
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
Solution:
Given:
$a_{3}=7, a_{7}-3 a_{3}=2$
We have:
$a_{3}=7$
$\Rightarrow a+(3-1) d=7$
$\Rightarrow a+2 d=7$ ...(i)
Also, $a_{7}-3 a_{3}=2$
$\Rightarrow a_{7}-21=2$ (Given)
$\Rightarrow a+(7-1) d=23$
$\Rightarrow a+6 d=23$ ...(ii)
From (i) and (ii), we get:
$4 d=16$
$\Rightarrow d=4$
Putting the value in (i), we get:
$a+2(4)=7$
$\Rightarrow a=-1$
$\therefore S_{20}=\frac{20}{2}[2(-1)+(20-1)(4)]$
$\Rightarrow S_{20}=10[-2+76]$
$\Rightarrow S_{20}=10[74]=740$
$\therefore a=-1, d=4, S_{20}=740$