The thickness at the centre of a plano convex lens is $3 \mathrm{~mm}$ and the diameter is $6 \mathrm{~cm}$. If the speed of light in the material of the lens is $2 \times 10^{8} \mathrm{~ms}^{-1}$. The focal length of the lens is
$2 \times 10^{8} \mathrm{~ms}^{-1}$. The focal length of the lens is
Correct Option: , 4
(4)
$\mathrm{R}^{2}=\mathrm{r}^{2}+(\mathrm{R}-\mathrm{t})^{2}$
$\mathrm{R}^{2}=\mathrm{r}^{2}+\mathrm{R}^{2}+\mathrm{t}^{2}-2 \mathrm{Rt}$
Neglecting $t^{2}$, we get
$\mathrm{R}=\frac{\mathrm{r}^{2}}{2 \mathrm{t}}$
$\therefore \frac{1}{\mathrm{f}}=(\mu-1)\left(\frac{1}{\mathrm{R}}-\frac{1}{\infty}\right)=\frac{\mu-1}{\mathrm{R}}$
$\mathrm{f}=\frac{\mathrm{R}}{\mu-1}=\frac{\mathrm{r}^{2}}{2 \mathrm{t}(\mu-1)}=\frac{\left(3 \times 10^{-2}\right)^{2}}{2 \times 3 \times 10^{-3} \times\left(\frac{3}{2}-1\right)}$
$=\frac{9 \times 10^{-4}}{6 \times 10^{-3} \times 1} \times 2$
$\mathrm{f}=0.3 \mathrm{~m}=30 \mathrm{~cm}$