The term independent of ' x ' in the expansion of

Question:

The term independent of ' $x$ ' in the expansion of

$\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$, where $x \neq 0,1$ is equal

to_________.

Solution:

$\left(\left(x^{1 / 3}+1\right)-\left(\frac{x^{1 / 2}+1}{x^{1 / 2}}\right)\right)^{10}$

$=\left(x^{1 / 3}-\frac{1}{x^{1 / 2}}\right)^{10}$

Now General Term

$\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{1 / 3}\right)^{10-\mathrm{r}} \cdot\left(-\frac{1}{\mathrm{x}^{1 / 2}}\right)^{\mathrm{r}}$

For independent term

$\frac{10-r}{3}-\frac{r}{2}=0 \Rightarrow r=4$

$\Rightarrow \mathrm{T}_{5}={ }^{10} \mathrm{C}_{4}=210$

Leave a comment