Question:
The tangent to the curve $y=x^{2}-5 x+5$, parallel to the line $2 y=4 x+1$, also passes through the point.
Correct Option: , 4
Solution:
$y=x^{2}-5 x+5$
$\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}-5=2 \Rightarrow \mathrm{x}=\frac{7}{2}$
at $\mathrm{x}=\frac{7}{2}, \mathrm{y}=\frac{-1}{4}$
Equation of tangent at $\left(\frac{7}{2}, \frac{-1}{4}\right)$ is $2 \mathrm{x}-\mathrm{y}-\frac{29}{4}=0$
Now check options
$x=\frac{1}{8}, y=-7$