Question:
The tangent to the curve, $y=x \mathrm{e}^{x^{2}}$ passing through the point $(1$, e $)$ also passes through the point:
Correct Option: , 2
Solution:
The equation of curve $y=x e^{x^{2}}$
$\Rightarrow \quad \frac{d y}{d x}=e^{x^{2}} \cdot 1+x, \mathrm{e}^{x^{2}} \cdot 2 x$
Since $(1, e)$ lies on the curve $y=x e^{x^{2}}$, then equation of tangent at $(1, e)$ is
$y-e=\left(e^{x^{2}}\left(1+2 x^{2}\right)\right)_{x=1}(x-1)$
$y-e=3 e(x-1)$
$3 e x-y=2 e$
So, equation of tangent to the curve passes through the
point $\left(\frac{4}{3}, 2 e\right)$