The tangent of angle between the lines whose intercepts on the axes are $a,-b$ and $b,-a$, respectively, is
A. $\frac{a^{2}-b^{2}}{a b}$
B. $\frac{b^{2}-a^{2}}{2}$
c. $\frac{b^{2}-a^{2}}{2 a b}$
D. None of these
C. $\frac{b^{2}-a^{2}}{2 a b}$
Explanation:
Let the first equation of line having intercepts on the axes $a,-b$ is
$\frac{x}{a}+\frac{y}{-b}=1$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=1$
$\Rightarrow \mathrm{bx}-\mathrm{ay}=\mathrm{ab} \ldots$ (i)
Let the second equation of line having intercepts on the axes $b,-a$ is
$\frac{x}{b}+\frac{y}{-a}=1$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{b}}-\frac{\mathrm{y}}{\mathrm{a}}=1$
$\Rightarrow \mathrm{ax}-\mathrm{by}=\mathrm{ab} \ldots$ (ii)
Now, we find the slope of equation (i)
$b x-a y=a b$
$\Rightarrow a y=b x-a b$
$\Rightarrow y=\frac{b}{a} x-b$
Since, the above equation is in $y=m x+b$ form So, the slope of eq. (i) is
So, the slope of eq. (i) is
$\mathrm{m}_{1}=\frac{\mathrm{b}}{\mathrm{a}}$
Now, we find the slope of equation (ii)
$a x-b y=a b$
$\Rightarrow b y=a x-a b$
$\Rightarrow y=\frac{a}{b} x-a$
Since, the above equation is in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form
$a x-b y=a b$
$\Rightarrow \mathrm{by}=\mathrm{ax}-\mathrm{ab}$
$\Rightarrow y=\frac{a}{b} x-a$
Since, the above equation is in $\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{b}$ form
So, the slope of equation (i) is
$\mathrm{m}_{1}=\frac{\mathrm{b}}{\mathrm{a}}$
Now, we find the slope of equation (ii)
$a x-b y=a b$
$\Rightarrow \mathrm{by}=\mathrm{ax}-\mathrm{ab}$
$\Rightarrow y=\frac{a}{b} x-a$
Since, the above equation is in $\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{b}$ form So, the slope of eq. (i) is
$\mathrm{m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$
Let $\theta$ be the angle between the given two lines.
$\tan \theta=\left|\frac{m_{1}-m_{1}}{1+m_{1} m_{2}}\right|$
Putting the values of $m_{1}$ and $m_{2}$ in above equation, we get
$\Rightarrow \tan \theta=\left|\frac{\frac{b}{a}-\frac{a}{b}}{1+\left(\frac{b}{a}\right)\left(\frac{a}{b}\right)}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{b^{2}-a^{2}}{a b}}{1+1}\right|$
$\Rightarrow \tan \theta=\left|\frac{b^{2}-a^{2}}{2 a b}\right|$
$\Rightarrow \tan \theta=\frac{b^{2}-a^{2}}{2 a b}$
Hence, the correct option is (c)