Question:
The system of linear equations
$3 x-2 y-k z=10$
$2 x-4 y-2 z=6$
$x+2 y-z=5 m$
is inconsistent if:
Correct Option: , 4
Solution:
$\Delta=\left|\begin{array}{ccc}3 & -2 & -k \\ 2 & -4 & -2 \\ 1 & 2 & -1\end{array}\right|=0$
$\Rightarrow 24-2(0)-\mathrm{k}(8)=0 \Rightarrow \mathrm{k}=3$
$\Delta_{\mathrm{x}}=\left|\begin{array}{ccc}10 & -2 & -3 \\ 6 & -4 & -2 \\ 5 \mathrm{~m} & 2 & -1\end{array}\right|$
$=10(8)-2(-10 m+6)-3(12+20 m)$
$=8(4-5 m)$
$\Delta_{\mathrm{y}}=\left|\begin{array}{ccc}3 & 10 & -3 \\ 2 & 6 & -2 \\ 1 & 5 \mathrm{~m} & -1\end{array}\right|$
$=3(-20 m-12)-2(6-10 m)+10(8)$
$=40 m-32=8(5 m-4)$
for inconsistent
$\mathrm{k}=3 \& \mathrm{~m} \neq \frac{4}{5}$