The surface area of a sphere is 154 cm2. The volume of the sphere is
(a) $179 \frac{2}{3} \mathrm{~cm}^{3}$
(b) $359 \frac{1}{3} \mathrm{~cm}^{3}$
(c) $1437 \frac{1}{3} \mathrm{~cm}^{3}$
(d) None of these
(a) $179 \frac{2}{3} \mathrm{~cm}^{3}$
Surface area of a sphere $=4 \pi r^{2}$
Therefore,
$4 \pi r^{2}=154$
$\Rightarrow 4 \times \frac{22}{7} \times r^{2}=154$
$\Rightarrow r^{2}=\left(154 \times \frac{7}{88}\right)$
$\Rightarrow r^{2}=\frac{49}{4}$
$\Rightarrow r^{2}=\left(\frac{7}{2}\right)^{2}$
$\Rightarrow r=\frac{7}{2} \mathrm{~cm}$
Volume of the sphere $=\frac{4}{3} \pi r^{3}$
$=\left(\frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{3}$
$=\frac{539}{3} \mathrm{~cm}^{3}$
$=179 \frac{2}{3} \mathrm{~cm}^{3}$