The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
Let the two numbers be a and b.
G.M. $=\sqrt{a b}$
According to the given condition,
$a+b=6 \sqrt{a b}$ $\ldots(1)$
$\Rightarrow(a+b)^{2}=36(a b)$
$\mathrm{Also}$
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$ $\ldots(2)$
Adding (1) and (2), we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$\Rightarrow a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of $a$ in $(1)$, we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.