Question:
The sum of two numbers is 18. The sum of their reciprocals is 1/4. Find the numbers.
Solution:
Let one of the number be x then other number is (18 − x).
Then according to question,
$\frac{1}{x}+\frac{1}{18-x}=\frac{1}{4}$
$\Rightarrow \frac{18-x+x}{x(18-x)}=\frac{1}{4}$
$\Rightarrow 18 \times 4=18 x-x^{2}$
$\Rightarrow 72=18 x-x^{2}$
$\Rightarrow x^{2}-18 x+72=0$
$\Rightarrow x^{2}-12 x-6 x+72=0$
$\Rightarrow x(x-12)-6(x-12)=0$
$\Rightarrow(x-6)(x-12)=0$
$\Rightarrow x-6=0$ or $x-12=0$
$\Rightarrow x=6$ or $x=12$
Since, x being a number,
Therefore,
When
$18-x=18-12=6$
And when
$18-x=18-6=12$
Thus, the two numbers are 6 and 12.