The sum of two number $a$ and $b$ is 15 , and the sum of their reciprocals $\frac{1}{a}$ and $\frac{1}{b}$ is $3 / 10$. Find the numbers $a$ and $b$.
Given that $a$ and $b$ be two numbers in such a way that $b=(15-a)$.
Then according to question
$\frac{1}{a}+\frac{1}{b}=\frac{3}{10}$
$\frac{(b+a)}{a b}=\frac{3}{10}$
$\frac{(a+b)}{a b}=\frac{3}{10}$
By cross multiplication
$10 a+10 b=3 a b$....(1)
Now putting the value of b in equation (1)
$10 a+10(15-a)=3 a(15-a)$
$3 a^{2}-45 a+150=0$
$3\left(a^{2}-15 a+50\right)=0$
$\left(a^{2}-15 a+50\right)=0$
$a^{2}-10 a-5 a+50=0$
$a(a-10)-5(a-10)=0$
$(a-10)(a-5)=0$
$(a-10)=0$
$a=10$
Or
$(a-5)=0$
$a=5$
Therefore,
When $a=10$ then;
$b=15-a=15-10$
$=5$
And when $a=5$ then
$b=15-a=15-5$
$=10$
Thus, two consecutive number be either $a=5, b=10$ or $a=10, b=5$