The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(C) $\frac{1}{8}$
(d) none of these
$(b) \frac{1}{2}$
Let the two non-zero numbers be $\mathrm{x}$ and $\mathrm{y}$. Then,
$x+y=8$
$\Rightarrow y=8-x$ .......(1)
Now,
$f(x)=\frac{1}{x}+\frac{1}{y}$
$\Rightarrow f(x)=\frac{1}{x}+\frac{1}{8-x}$ [From eq. (1)]
$\Rightarrow f^{\prime}(x)=\frac{-1}{x^{2}}+\frac{1}{(8-x)^{2}}$
For a local minima or a local maxima, we must have
$f^{\prime}(x)=0$
$\Rightarrow \frac{-1}{x^{2}}+\frac{1}{(8-x)^{2}}=0$
$\Rightarrow \frac{-(8-x)^{2}+x^{2}}{(x)^{2}(8-x)^{2}}=0$
$\Rightarrow-64-x^{2}+16 x+x^{2}=0$
$\Rightarrow 16 x-64=0$
$\Rightarrow x=4$
$f^{\prime \prime}(x)=\frac{2}{x^{3}}-\frac{2}{(8-x)^{3}}$
$\Rightarrow f^{\prime \prime}(4)=\frac{2}{4^{3}}-\frac{2}{(8-4)^{3}}$
$\Rightarrow f^{\prime \prime}(4)=\frac{2}{64}-\frac{2}{64}=0$
$\therefore$ Minimum value $=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$