Question:
The sum of two natural numbers is 8 and their product is 15. Find the numbers.
Solution:
Let the required natural numbers be x and (8 − x).
It is given that the product of the two numbers is 15.
$\therefore x(8-x)=15$
$\Rightarrow 8 x-x^{2}=15$
$\Rightarrow x^{2}-8 x+15=0$
$\Rightarrow x^{2}-5 x-3 x+15=0$
$\Rightarrow x(x-5)-3(x-5)=0$
$\Rightarrow(x-5)(x-3)=0$
$\Rightarrow x-5=0$ or $x-3=0$
$\Rightarrow x=5$ or $x=3$
Hence, the required numbers are 3 and 5.