Question:
The sum of two natural numbers is 15 and the sum of their reciprocals is $\frac{3}{10}$. Find the numbers.
Solution:
Let the required natural numbers be x and (15 − x).
According to the given condition,
$\frac{1}{x}+\frac{1}{15-x}=\frac{3}{10}$
$\Rightarrow \frac{15-x+x}{x(15-x)}=\frac{3}{10}$
$\Rightarrow \frac{15}{15 x-x^{2}}=\frac{3}{10}$
$\Rightarrow 15 x-x^{2}=50$
$\Rightarrow x^{2}-15 x+50=0$
$\Rightarrow x^{2}-10 x-5 x+50=0$
$\Rightarrow x(x-10)-5(x-10)=0$
$\Rightarrow(x-5)(x-10)=0$
$\Rightarrow x-5=0$ or $x-10=0$
$\Rightarrow x=5$ or $x=10$
When x = 5,
15 − x = 15 − 5 = 10
When x = 10,
15 − x = 15 − 10 = 5
Hence, the required natural numbers are 5 and 10.