The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
Let the first term of a G.P be a and its common ratio be r.
$\therefore a_{1}+a_{2}+a_{3}=56$
$\Rightarrow a+a r+a r^{2}=56$
$\Rightarrow a\left(1+r+r^{2}\right)=56$
$\Rightarrow a=\frac{56}{1+r+r^{2}}$ ....(i)
Now, according to the question:
$a-1, a r-7$ and $a r^{2}-21$ are in A.P.
$\therefore 2(\operatorname{ar}-7)=a-1+a r^{2}-21$
$\Rightarrow 2 \mathrm{ar}-14=\mathrm{ar}^{2}+\mathrm{a}-22$
$\Rightarrow \mathrm{ar}^{2}-2 \mathrm{ar}+\mathrm{a}-8=0$
$\Rightarrow \mathrm{a}(1-\mathrm{r})^{2}=8$
$\Rightarrow \mathbf{a}=\frac{8}{(1-\mathrm{r})^{2}}$ ...(ii)
Equating $(\mathrm{i})$ and $(\mathrm{ii})$ :
$\Rightarrow \frac{8}{(1-r)^{2}}=\frac{56}{1+r+r^{2}}$
$\Rightarrow 8\left(1+\mathrm{r}+\mathrm{r}^{2}\right)=56\left(1+\mathrm{r}^{2}-2 \mathrm{r}\right) \Rightarrow 1+\mathrm{r}+\mathrm{r}^{2}=7\left(1+\mathrm{r}^{2}-2 \mathrm{r}\right)$
$\Rightarrow 1+\mathrm{r}+\mathrm{r}^{2}=7+7 \mathrm{r}^{2}-14 \mathrm{r}$
$\Rightarrow 6 \mathrm{r}^{2}-15 \mathrm{r}+6=0$
$\Rightarrow 3\left(2 \mathrm{r}^{2}-5 \mathrm{r}+2\right)=0$
$\Rightarrow 2 \mathrm{r}^{2}-4 \mathrm{r}-\mathrm{r}+2=0$
$\Rightarrow 2 \mathrm{r}(\mathrm{r}-2)-1(\mathrm{r}-2)=0$
$\Rightarrow(\mathrm{r}-2)(2 \mathrm{r}-1)=0$
$\Rightarrow \mathrm{r}=2, \frac{1}{2}$
When $\mathrm{r}=2, \mathrm{a}=8 . \quad[\operatorname{Using}(\mathrm{ii})]$
And, the required numbers are 8,16 and 32 .
When $\mathrm{r}=\frac{1}{2}, \mathrm{a}=32 . \quad[\mathrm{Using}(\mathrm{ii})]$
And, the required numbers are 32,16 and 8 .