Question:
The sum of the squares of two numbers is 233 and one of the number is 3 less than twice the other number. Find the numbers.
Solution:
Let the numbers be integers. One of the numbers be $x$. So, the other will be $(2 x-3)$.
Then according to question,
$x^{2}+(2 x-3)^{2}=233$
$x^{2}+4 x^{2}-12 x+9=233$
$5 x^{2}-12 x+9-233=0$
$5 x^{2}-12 x-224=0$
$5 x^{2}-40 x+28 x-224=0$
$5 x(x-8)+28(x-8)=0$
$(x-8)(5 x+28)=0$
$(x-8)=0$
$x=8$
Or
$(5 x+28)=0$
$x=\frac{-28}{5}$
Since, we have assumed the numbers to be integers, so x cannot be a rational number/fraction.
Therefore, for x = 8
Other number =
$(2 x-3)=2 \times 8-3$
$=16-3$
$=13$
Thus, whole numbers be 8,13 .