Question:
The sum of the squares of two consecutive positive odd numbers is 514. Find the numbers.
Solution:
Let the two consecutive positive odd numbers be x and (x + 2).
According to the given condition,
$x^{2}+(x+2)^{2}=514$
$\Rightarrow x^{2}+x^{2}+4 x+4=514$
$\Rightarrow 2 x^{2}+4 x-510=0$
$\Rightarrow x^{2}+2 x-255=0$
$\Rightarrow x^{2}+17 x-15 x-255=0$
$\Rightarrow x(x+17)-15(x+17)=0$
$\Rightarrow(x+17)(x-15)=0$
$\Rightarrow x+17=0$ or $x-15=0$
$\Rightarrow x=-17$ or $x=15$
∴ x = 15 (x is a positive odd number)
When x = 15,
x + 2 = 15 + 2 = 17
Hence, the required numbers are 15 and 17.