Question:
The sum of the squares of two consecutive positive even numbers is 452. Find the numbers.
Solution:
Let the two consecutive positive even numbers be x and (x + 2).
According to the given condition,
$x^{2}+(x+2)^{2}=452$
$\Rightarrow x^{2}+x^{2}+4 x+4=452$
$\Rightarrow 2 x^{2}+4 x-448=0$
$\Rightarrow x^{2}+2 x-224=0$
$\Rightarrow x^{2}+16 x-14 x-224=0$
$\Rightarrow x(x+16)-14(x+16)=0$
$\Rightarrow(x+16)(x-14)=0$
$\Rightarrow x+16=0$ or $x-14=0$
$\Rightarrow x=-16$ or $x=14$
∴ x = 14 (x is a positive even number)
When x = 14,
x + 2 = 14 + 2 = 16
Hence, the required numbers are 14 and 16.