The sum of the series

Question:

The sum of the series $\frac{1}{x+1}+\frac{2}{x^{2}+1}+\frac{2^{2}}{x^{4}+1}+\ldots . .+\frac{2^{100}}{x^{2^{100}}+1}$ when $x=2$ is :

  1. $1+\frac{2^{101}}{4^{101}-1}$

  2. $1+\frac{2^{100}}{4^{101}-1}$

  3. $1-\frac{2^{100}}{4^{100}-1}$

  4. $1-\frac{2^{101}}{4^{101}-1}$


Correct Option: , 4

Solution:

$S=\frac{1}{x+1}+\frac{2}{x^{2}+1}+\frac{2^{2}}{x^{4}+1}+\ldots \frac{2^{100}}{x^{2^{100}}+1}$

$\mathrm{S}+\frac{1}{1-\mathrm{x}}=\frac{1}{1-\mathrm{x}}+\frac{1}{\mathrm{x}+1}+\ldots .=\frac{2}{1-\mathrm{x}^{2}}+\frac{2}{1+\mathrm{x}^{2}}+\ldots$

$\mathrm{S}+\frac{1}{1-\mathrm{x}}=\frac{2^{101}}{1-\mathrm{x}^{2^{101}}}$

Put $x=2$

$S=1-\frac{2^{101}}{2^{2^{101}}-1}$

Not in option (BONUS)

 

Leave a comment