The sum of the infinite series

Question:

The sum of the infinite series $1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\frac{17}{3^{4}}+\frac{22}{3^{5}}+\ldots$ is equal to

  1. (1) $\frac{9}{4}$

  2. (2) $\frac{15}{4}$

  3. (3) $\frac{13}{4}$

  4. (4) $\frac{11}{4}$


Correct Option: , 3

Solution:

$s=1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\frac{17}{3^{4}}+\frac{22}{3^{5}}+\ldots$

$\frac{s}{3}=\frac{1}{3}+\frac{2}{3^{2}}+\frac{7}{3^{3}}+\ldots \ldots \infty$

$\frac{2 s}{3}=1+\frac{1}{3}+\frac{5}{3^{2}}+\frac{5}{3^{3}}+\ldots \ldots \infty$

$\frac{2 s}{3}=\frac{4}{3}+\frac{5}{3}\left\{\frac{1 / 3}{1-\frac{1}{3}}\right\}=\frac{5}{6}+\frac{4}{3}=\frac{13}{6}$

$s=\frac{13}{4}$

Leave a comment