Question:
The sum of infinity of the series $9-3+1-\frac{1}{3}+$ , is
Solution:
$9-3+1-\frac{1}{3}+\ldots \ldots \ldots \ldots$
Here $a=9$
$r=\frac{a_{2}}{a_{1}}=\frac{-3}{9}=\frac{-1}{3}$
$r=\frac{a_{3}}{a_{2}}=\frac{1}{-3}=\frac{-1}{3}$
Sum of infinite terms of G.P is
$S_{n}=\frac{a}{1-r}$
$S_{n}=\frac{9}{1-\left(\frac{-1}{3}\right)}$
$=\frac{9}{\frac{3+1}{3}}$
$=\frac{9 \times 3}{4}$
$S_{n}=\frac{27}{4}$
i.e the sum of infinity of the series