Question:
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Solution:
Let the first three numbers of the given G.P. be $\frac{a}{r}, a$ and $a r$.
∴ Product of the G.P. = −1
= a3 = −1
= a = −1
Similarly, Sum of the G.P. $=\frac{13}{12}$
$\Rightarrow \frac{a}{r}+a+a r=\frac{13}{12}$
Substituting the value of a = −1
$\frac{-1}{r}-1-r=\frac{13}{12}$
$\Rightarrow 12 r^{2}+25 r+12=0$
$\Rightarrow 12 r^{2}+16 r+9 r+12=0$
$\Rightarrow 4 r(3 r+4)+3(3 r+4)=0$
$\Rightarrow(4 r+3)(3 r+4)=0$
$\Rightarrow r=-\frac{3}{4},-\frac{4}{3}$
Hence, the G.P. for $a=-1$ and $r=-\frac{3}{4}$ is $\frac{4}{3},-1$ and $\frac{3}{4}$.
And, the G.P. for $a=-1$ and $r=-\frac{4}{3}$ is $\frac{3}{4},-1$ and $\frac{4}{3}$.