The sum of first n terms of two APs are in the ratio (3n + 8) : (7n + 15). Find the ratio of their 12th terms.
Let the first term of the first AP be a
And common difference be d
$s_{n}=\frac{n}{2}[2 a+(n-1) d]$
And
$a_{n}=a+(n-1) d$
$a_{12}=a+11 d=3 n+8$
Similarly, for second A.P
Let first term be $A$
And common difference be $D$
$S_{n}=\frac{n}{2}[2 A+(n-1) D]$
And
$A_{n}=A+(n-1) D$
$A_{12}=A+11 D=7 n+15$
We have to find the ratio of 12 th term
$\frac{a_{12} \text { of first A.P }}{A_{12} \text { of second A.P }}=\frac{a+11 d}{A+11 D}$
$\frac{s_{n} \text { of first A.P }}{S_{n} \text { of second A.P }}=\frac{3 n+8}{7 n+15}$
$\frac{\frac{n}{2}[2 a+(n-1) d]}{\frac{n}{2}[2 A+(n-1) D]}=\frac{3 n+8}{7 n+15}$
$\frac{2 a+(n-1) d}{2 A+(n-1) D}=\frac{3 n+8}{7 n+15}$
$\Rightarrow \frac{a+\left(\frac{n-1}{2}\right) d}{A+\left(\frac{n-1}{2}\right) D}=\frac{a+11 d}{A+11 D}=\frac{3 n+8}{7 n+15}$ $\cdots(1)$
We have to find $\frac{a+11 d}{A+11 D}$
$\frac{n-1}{2}=11$
$\Rightarrow n=23$
Put $n=23$ in (1)
$\frac{a+\left(\frac{22}{2}\right) d}{A+\left(\frac{22}{2}\right) D}=\frac{69+8}{161+15}$
$\frac{a+11 d}{A+11 D}=\frac{77}{176}$
$\frac{a+11 d}{A+11 D}=\frac{7}{16}$
Ratio of 12 th term is $7: 16$