Question:
The sum of first m terms of an AP is (4m2 − m). If its nth term is 107, find the value of n. Also, find the 21st term of this AP.
Solution:
Let Sm denote the sum of the first m terms of the AP. Then,
$S_{m}=4 m^{2}-m$
$\Rightarrow S_{m-1}=4(m-1)^{2}-(m-1)$
$=4\left(m^{2}-2 m+1\right)-(m-1)$
$=4 m^{2}-9 m+5$
Suppose am denote the mth term of the AP.
$\therefore a_{m}=S_{m}-S_{m-1}$
$=\left(4 m^{2}-m\right)-\left(4 m^{2}-9 m+5\right)$
$=8 m-5 \quad \ldots(1)$
Now,
$a_{n}=107$ (Given)
$\Rightarrow 8 n-5=107$ [From (1)]
$\Rightarrow 8 n=107+5=112$
$\Rightarrow n=14$
Thus, the value of n is 14.
Putting m = 21 in (1), we get
$a_{21}=8 \times 21-5=168-5=163$
Hence, the 21st term of the AP is 163 .