The sum of an infinite GP is 57, and the sum of their cubes is 9747. Find the GP.
Let the first term Of G.P. be a, and common ratio be r.
$\frac{\mathrm{a}}{\therefore 1-\mathrm{r}}=57 \ldots$ (1)
On cubing each term will become,
$a^{3,} a^{3} r^{3}, \ldots$
$\therefore$ This sum $=\frac{\mathrm{a}^{3}}{1-\mathrm{r}^{3}}=9747 \ldots$ (2)
a=57(1-r) put this in equation 2 we get
$\frac{(57 \times(1-r))^{3}}{1-r^{3}}=9747$
$\Rightarrow \frac{57^{3} \times(1-r)^{3}}{1-r^{3}}=9747$
$\Rightarrow \frac{(1-r) \times(1-r)^{2}}{(1-r)\left(1+r+r^{2}\right)}=\frac{9747}{57 \times 57 \times 57}=\frac{1}{19}$
$\Rightarrow 19\left(1-2 r+r^{2}\right)=1+r+r^{2}$
$\Rightarrow 19 r^{2}-r^{2}-38 r-r+19-1=0$
$\Rightarrow 18 r^{2}-39 r+18=0$
$\Rightarrow 6 r^{2}-13 r+6=0$
$\Rightarrow(2 r-3)(3 r-2)=0$
$\Rightarrow r=2 / 3,3 / 2$
But $-1 ⇒ r=2/3 Substitute this value of r in equation 1 we get $a=57 \times\left(1-\frac{2}{3}\right)=19$ Thus the first term of G.P. is 19, and the common ratio is 2/3 $\therefore G . P=19, \frac{38}{3}, \frac{76}{9}, \ldots$ $19, \frac{38}{3}, \frac{76}{9}, \ldots$