The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
(a) 1/2
(b) 2/3
(c) 1/3
(d) −1/2
(a) 1/2
Let the G.P. be $a, a r, a r^{2}, a r^{3}, \ldots, \infty$.
$S_{\infty}=4$
$\Rightarrow \frac{a}{1-r}=4$ ...(i)
Also, sum of the cubes, $S_{1}=92$
$\Rightarrow \frac{a^{3}}{\left(1-r^{3}\right)}=92$ ...(ii)
Putting the value of $a$ from $(\mathrm{i})$ to $(\mathrm{ii})$ :
$\Rightarrow \frac{(4(1-r))^{3}}{\left(1-r^{3}\right)}=92$
$\Rightarrow \frac{64(1-r)^{3}}{\left(1-r^{3}\right)}=92$
$\Rightarrow \frac{(1-r)^{3}}{(1-r)\left(1+r+r^{2}\right)}=\frac{92}{64}$
$\Rightarrow \frac{(1-r)^{2}}{\left(1+r+r^{2}\right)}=\frac{23}{16}$
$\Rightarrow 16\left(1-2 r+r^{2}\right)=23\left(1+r+r^{2}\right)$
$\Rightarrow 7 r^{2}+55 r+7=0$
Using the quadratic formula:
$\Rightarrow r=\frac{-55+\sqrt{55^{2}-4 \times 7 \times 7}}{2 \times 7}$
$\Rightarrow r=\frac{-55+\sqrt{55^{2}-14^{2}}}{14}$
$\Rightarrow r=\frac{-55+\sqrt{2829}}{14}$
Disclaimer: None of the given options are correct. This solution has been created according to the question given in the book.