The sum of all integral values of $\mathrm{k}(\mathrm{k} \neq 0)$ for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in $x$ has no real roots, is
$\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$
$x \in R-\{1,2\}$
$\Rightarrow \mathrm{k}(2 \mathrm{x}-4-\mathrm{x}+1)=2\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)$
$\Rightarrow \mathrm{k}(\mathrm{x}-3)=2\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)$
for $x \neq 3, \quad k=2\left(x-3+\frac{2}{x-3}+3\right)$
$x-3+\frac{2}{x-3} \geq 2 \sqrt{2}, \forall x>3$
$\& x-3+\frac{2}{x-3} \leq-2 \sqrt{2}, \forall x<-3$
$\Rightarrow 2\left(x-3+\frac{2}{x-3}+3\right) \in(-\infty, 6-4 \sqrt{2}] \cup[6+4 \sqrt{2}, \infty)$
for no real roots
$\mathrm{k} \in(6-4 \sqrt{2}, 6+4 \sqrt{2})-\{0\}$
Integral $\mathrm{k} \in\{1,2 \ldots . .11\}$
Sum of $\mathrm{k}=66$