Question:
The sum of a number and its square is 63/4, find the numbers.
Solution:
Let first numbers beĀ x
Then according to question
$x+x^{2}=\frac{63}{4}$
Let $x=y^{2}$ then
$4\left(x+x^{2}\right)=63$
$4 x^{2}+4 x-63=0$
$4 x^{2}+18 x-14 x-63=0$
$2 x(2 x+9)-7(2 x+9)=0$
$(2 x+9)(2 x-7)=0$
$(2 x+9)=0$
$x=-\frac{9}{2}$
Or
$(2 x-7)=0$
$x=\frac{7}{2}$
Thus, the required number be $\frac{7}{2}, \frac{-9}{2}$