Question:
The sum of a number and its reciprocal is 17/4. Find the number.
Solution:
Let a numbers be $x$ and its reciprocal is $\frac{1}{x}$
Then according to question
$x+\frac{1}{x}=\frac{17}{4}$
$\frac{x^{2}+1}{x}=\frac{17}{4}$
By cross multiplication
$4 x^{2}+4=17 x$
$4 x^{2}-17 x+4=0$
$4 x^{2}-17 x+4=0$
$4 x^{2}-x-16 x+4=0$
$x(4 x-1)-4(4 x-1)=0$
$(4 x-1)(x-4)=0$
$(4 x-1)=0$
$x=\frac{1}{4}$
Or
$(x-4)=0$
$x=4$
Thus, two consecutive number be either 4 or $\frac{1}{4}$