Question:
The sum of a natural number and its square is 156. Find the number.
Solution:
Let the required natural number be x.
According to the given condition,
$x+x^{2}=156$
$\Rightarrow x^{2}+x-156=0$
$\Rightarrow x^{2}+13 x-12 x-156=0$
$\Rightarrow x(x+13)-12(x+13)=0$
$\Rightarrow(x+13)(x-12)=0$
$\Rightarrow x+13=0$ or $x-12=0$
$\Rightarrow x=-13$ or $x=12$
∴ x = 12 (x cannot be negative)
Hence, the required natural number is 12.