Question:
The sum of a natural number and its positive square root is 132. Find the number.
Solution:
Let the required natural number be x.
According to the given condition,
$x+\sqrt{x}=132$
Putting $\sqrt{x}=y$ or $x=y^{2}$, we get
$y^{2}+y=132$
$\Rightarrow y^{2}+y-132=0$
$\Rightarrow y^{2}+12 y-11 y-132=0$
$\Rightarrow y(y+12)-11(y+12)=0$
$\Rightarrow(y+12)(y-11)=0$
$\Rightarrow y+12=0$ or $y-11=0$
$\Rightarrow y=-12$ or $y=11$
∴ y = 11 (y cannot be negative)
Now,
$\sqrt{x}=11$
$\Rightarrow x=(11)^{2}=121$
Hence, the required natural number is 121.