The string of a kite is 100 m long and it makes an angle of 60° with the horizontal.

Question:

The string of a kite is 100 m long and it makes an angle of 60° with the horizontal. If these is no slack in the string, the height of the kite from the ground is

(a) $50 \sqrt{3} \mathrm{~m}$

(b) $100 \sqrt{3} \mathrm{~m}$

(c) $50 \sqrt{2} \mathrm{~m}$

(d) $100 \mathrm{~m}$

 

Solution:

(a) $50 \sqrt{3} \mathrm{~m}$

Let $A B$ be the string of the kite and $A X$ be the horizontal line.

If $B C \perp A X$, then $A B=100 \mathrm{~m}$ and $\angle B A C=60^{\circ}$.

Let:

$B C=h \mathrm{~m}$

In the right $\triangle A C B$, we have:

$\frac{B C}{A B}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$

$\Rightarrow \frac{h}{100}=\frac{\sqrt{3}}{2}$

$\Rightarrow h=\frac{100 \sqrt{3}}{2}=50 \sqrt{3} \mathrm{~m}$

Hence, the height of the kite is $50 \sqrt{3} \mathrm{~m}$.

 

Leave a comment