The stopping potential for electrons emitted from a photosensitive surface illuminated by light of wavelength
The stopping potential for electrons emitted from a photosensitive surface illuminated by light of wavelength $491 \mathrm{~nm}$ is $0.710 \mathrm{~V}$. When the incident wavelength is changed to a new value, the stopping potential is $1.43 \mathrm{~V}$. The new wavelength is:
Correct Option: , 2
(2)
From the photoelectric effect equation
$\frac{h c}{\lambda}=\phi+\operatorname{ev}_{s}$
so $\mathrm{ev}_{\mathrm{s}_{1}}=\frac{\mathrm{hc}}{\lambda_{1}}-\phi$........
$\mathrm{ev}_{83}=\frac{\mathrm{hc}}{1}-\phi \ldots . . .(\mathrm{ii})$
Subtract equation (i) from equation (ii) ev $_{s_{1}}-\mathrm{ev}_{s_{2}}=\frac{h c}{\lambda_{1}}-\frac{h c}{\lambda_{2}}$
$v_{s_{1}}-v_{s_{2}}=\frac{h c}{e}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)$
$(0.710-1.43)=1240\left(\frac{1}{491}-\frac{1}{\lambda_{2}}\right)$
$\frac{-0.72}{1240}=\frac{1}{491}-\frac{1}{\lambda_{2}}$
$\frac{1}{\lambda_{2}}=\frac{1}{491}+\frac{0.72}{1240}$
$\frac{1}{\lambda_{2}}=0.00203+0.00058$
$\frac{1}{\lambda_{2}}=0.00261$
$\lambda_{2}=383.14$
$\lambda_{2} \simeq 382 \mathrm{~nm}$