The solutions of the equation
$\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0,(0
Correct Option: , 4
$\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0$
use $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\Rightarrow(2+4 \sin 2 x)\left|\begin{array}{ccc}1 & 1 & 1 \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0$
$\Rightarrow \sin 2 x=-\frac{1}{2}$
$\Rightarrow 2 x=\pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6}$
$x=\frac{\pi}{2}+\frac{\pi}{12}, \pi-\frac{\pi}{12}$