The solution of which of the following equations is neither a fraction nor an integer?
(a) -3x + 2=5x + 2
(b)4x-18=2
(c)4x + 7 = x + 2
(d)5x-8 = x +4
For option (c)
Given linear equation is $\quad 3 x+2=5 x+2$
$\Rightarrow \quad 3 x-5 x=2-2 \quad$ [transposing $5 x$ to LHS and 2 to RHS]
$\Rightarrow \quad-2 x=0$
$\Rightarrow$ $\frac{-2 x}{-2}=\frac{0}{-2}$ [dividing both sides by $-2$ ]
$\therefore$ $x=0$
Hence, $x=0$ is an integer.
For option (b)
Given lingar equation is $\quad 4 x-18=2$
$\Rightarrow$ $4 x=2+18$ [transposing $-18$ to RHS]
$\Rightarrow$ $4 x=20$
$\Rightarrow$ $\frac{4 x}{4}=\frac{20}{4}$ [dividing both sides by 4 ]
$\because$ $x=5$
Hence, $x=5$ is a positive integer.
For option (c)
Given linear equation is $4 x+7=x+2$
$\Rightarrow \quad 4 x-x=2-7 \quad$ [transposing $x$ to LHS and 7 to RHS]
$\Rightarrow \quad 3 x=-5$
$\therefore$ $x=\frac{-5}{3}$ [dividing both sides by 3 ]
Hence, $x=\frac{-5}{3}$ is neither a fraction nor an integer.
For option (d)
Given linear equation is $5 x-8=x+4$
$\Rightarrow \quad 5 x-x=4+8 \quad$ [transposing $x$ to LHS and $-8$ to RHS]
$\Rightarrow$ $\frac{4 x}{4}=\frac{12}{4}$ [dividing both sides by 4]
$\therefore \quad x=3$
Hence, $x=3$ is a positive integer.
From the above it is clear that, option (c) satisfies the condition.