The solution of the differential equation, $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-y)^{2}$, when $y(1)=1$, is :
Correct Option: , 2
The given differential equation
$\frac{d y}{d x}=(x-y)^{2}$ .......(1)
Let $x-y=t \Rightarrow 1-\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow \quad \frac{d y}{d x}=1-\frac{d t}{d x}$
Now, from equation (1)
$\left(1-\frac{d t}{d x}\right)=(t)^{2}$
$\Rightarrow \quad 1-t^{2}=\frac{d t}{d x} \Rightarrow \int d x=\int \frac{d t}{1-t^{2}}$
$\Rightarrow \quad-x=\frac{1}{2 \times 1} \ln \left|\frac{t-1}{t+1}\right|+c$
$\Rightarrow \quad-x=\frac{1}{2} \ln \left|\frac{x-y-1}{x-y+1}\right|+c$
$\because$ The given condition $y(1)=1$
$-1=\frac{1}{2} \ln \left|\frac{1-1-1}{1-1+1}\right|+c \Rightarrow c=-1$
Hence, $2(x-1)=-\ln \left|\frac{1-x+y}{1-y+x}\right|$