The smallest value of $x$ satisfying the equation $\sqrt{3}(\cot x+\tan x)=4$ is
(a) $2 \pi / 3$
(b) $\pi / 3$
(c) $\pi / 6$
(d) $\pi / 12$
(c) $\pi / 6$
Given:
$\sqrt{3}(\cot x+\tan x)=4$
$\Rightarrow \sqrt{3}\left(\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}\right)=4$
$\Rightarrow \sqrt{3}\left(\cos ^{2} x+\sin ^{2} x\right)=4 \sin x \cos x$
$\Rightarrow \sqrt{3}=2 \sin 2 x \quad[\sin 2 x=2 \sin x \cos x]$
$\Rightarrow \sin 2 x=\frac{\sqrt{3}}{2}$
$\Rightarrow \sin 2 x=\sin \frac{\pi}{3}$
$\Rightarrow 2 x=n \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}, n \in Z$
$\Rightarrow x=\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{6}, n \in Z$
To obtain the smallest value of $x$, we will put $n=0$ in the above equation.
Thus, we have:
$x=\frac{\pi}{6}$
Hence, the smallest value of $x$ is $\frac{\pi}{6}$.