The slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point $(2,-1)$ is
(A) $\frac{22}{7}$
(B) $\frac{6}{7}$
(C) $\frac{7}{6}$
(D) $\frac{-6}{7}$
The given curve is $x=t^{2}+3 t-8$ and $y=2 t^{2}-2 t-5$.
$\therefore \frac{d x}{d t}=2 t+3$ and $\frac{d y}{d t}=4 t-2$
$\therefore \frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{4 t-2}{2 t+3}$
The given point is (2, −1).
At x = 2, we have:
$t^{2}+3 t-8=2$
$\Rightarrow t^{2}+3 t-10=0$
$\Rightarrow(t-2)(t+5)=0$
$\Rightarrow t=2$ or $t=-5$
At $y=-1$, we have:
$2 t^{2}-2 t-5=-1$
$\Rightarrow 2 t^{2}-2 t-4=0$
$\Rightarrow 2\left(t^{2}-t-2\right)=0$
$\Rightarrow(t-2)(t+1)=0$
$\Rightarrow t=2$ or $t=-1$
The common value of t is 2.
Hence, the slope of the tangent to the given curve at point (2, −1) is
$\left.\frac{d y}{d x}\right]_{t=2}=\frac{4(2)-2}{2(2)+3}=\frac{8-2}{4+3}=\frac{6}{7}$
The correct answer is B.