Question:
The slope of the tangent to the curve $x=3 t^{2}+1, y=t^{3}-1$ at $x=1$ is
A. $\frac{1}{2}$
B. 0
C. $-2$
D. $\infty$
Solution:
Given that $x=3 t^{2}+1, y=t^{3}-1$
For $x=1$
$3 t^{2}+1=1$
$\Rightarrow 3 t^{2}=0$
$\Rightarrow t=0$
Now, differentiating both the equations w.r.t. t, we get
$\frac{\mathrm{dx}}{\mathrm{dt}}=6 \mathrm{t}$ and $\frac{\mathrm{dy}}{\mathrm{dt}}=3 \mathrm{t}^{2}$
$\Rightarrow$ Slope of the curve:
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}$
$=\frac{3 t^{2}}{6 t}$
$=\frac{1}{2} t$
For $t=0$,
Slope of the curve $=0$
Hence, option B is correct.